

EMG and HA (High Availability) Page 1 http://www.nordicmessaging.se

EMG plugin API

Overview
The functionality in EMG can be extended by writing a plugin. These should be written
in C, or in some language that can produce a shared library with "C" linkage. Each
plugin implements one or more of the API functions, each one called at a specific place
in the life cycle of each message.
All exported functions are available to all plugins that are loaded by the same EMG
process, so use the static keyword on all functions that shouldn't be used by EMG. If that
is not possible, for example if the plugin consists of several files, make sure to give them
a unique prefix.

API functions
There are eight API functions you can implement. If they exist in the plugin they will be
called. Any missing functions will be ignored, so just implement the functions needed.
The functions are of three different types:

Load and unload

When EMG starts, the shared library that contains the plugin is loaded and this API
function is called:
void* create_config(char* name, char* filename);

The name is the name of the plugin, as given in the server.cfg file by the PLUGIN myplugin <
line, and the filename is the value of the keyword CONFIG in that section. There is nothing
that says that this has to be a filename, it might just as well be the name of a database
profile to use, or something entirely different. Using it as the filename of the
configuration file for the plugin is very convenient though. From EMG's point of view it
is simply a string, so it is up to the plugin to interpret it.
The return value is passed as the config parameter to the other API functions.
When EMG is stopped (emgd –stop), or refreshed (emgd -reload or emgd -refresh), the plugin
is unloaded. At this point, this API function is called:
void destroy_config(void* config);

The parameter is the pointer that create_config() returned. The function should release all
resources that were acquired by the create_config() function.
Due to linker namespace problems there is nothing that ensures that create_config() finds
the destroy_config() from the correct plugin file, so if you use more than one plugin you
MUST implement destroy_config in all your plugins as a wrapper which in turn calls a
static “destroy” function like in the example below.
void* create_config(char* name, char* filename)
{

 config_t* config = calloc(1, sizeof(config_t));
 // populate config
 if (isvalid(config)) return config;
 do_destroy_config(config);
 return NULL;

}
static void do_destroy_config(void* config)
{

EMG and HA (High Availability) Page 2 http://www.nordicmessaging.se

 // clear config
 free(config);
}
void destroy_config(void* config)
{
 do_destroy_config(config);
}

Thread start and stop

For each thread that is created to run the plugin, this function is called first:
void* plugin_thread_start(void* config);

The config is the configuration object returned by create_config(). This function should
create an object that contains any thread specific data that is needed. If the plugin
wants to communicate with a database, this is a good place to perform the connection,
initialize any prepared statements, etc.
The returned pointer will be used as the thread_local parameter to plugin_thread_stop() below.
The message functions will get the pointer in the request parameter in the field threadlocal.
If the plugin will only be used with a single instance, these operations can instead be
done in create_config().
When the plugin thread is about to exit, this function is called:
void plugin_thread_stop(void* threadlocal);

The threadlocal pointer is the one returned by plugin_thread_start() above. Just as for the pair
create_config() and destroy_config(), this function should
free all resources aquired by plugin_thread_start().

For each message

There are four points in the life cycle of each message that check for an external plugin.
The first point is after the message has arrived to EMG. All DEFAULT and FORCE
options are considered, all address rewrites are done, any contents mapping are
performed, etc. The only thing left to do is the routing. At this point the function
before_receive() is called. This function can set the ROUTE option to force the message to
be routed somewhere, modify any other option, and even prohibit the message from
being accepted. Normally the function should return 0, but if it returns anything else the
message is rejected with the error code set from response->result + OFFSET (is set in the
plugin configuration).
The second point is right before the message is being sent. At this point the function
before_send() is called. This function can be used to temporarily stop messages on a
connector based on some external criteria (e.g. the time of day), run the first phase in a
"two phase commit" scenario, etc. The return code should be 0 to accept the operation
and anything else to stop the message.
After the message has been sent and a return code has been received from the SMSC at
the other end, the function after_send() is called. The SMSC return code is put in the result
field in the request structure.
This function should always return 0.
Some messages get a delivery receipt back after some time. When this happens, the
function after_dlr() is called. The message given to this function is the new message entry
containing the delivery report which is going back to the original sender.
All four functions above use the same parameters:

EMG and HA (High Availability) Page 3 http://www.nordicmessaging.se

int before_receive(void* config, pluginrequest_t* request, pluginresponse_t* response);
int before_send(void* config, pluginrequest_t* request, pluginresponse_t* response);
int after_send(void* config, pluginrequest_t* request, pluginresponse_t* response);
int after_dlr(void* config, pluginrequest_t* request, pluginresponse_t* response);

The pluginrequest_t and pluginresponse_t structures are defined in the
file plugintype.h.

Message attributes
Most plugins want to examine the attributes in the message in some way. The message
itself can be found in the request parameter, in the field qe. Each message contains a list of
options, including the message body, the sender and recipient, etc.
The list of functions that can be used to examine and modify these values can be found
in the section "Messages" below.

Threads
All requests to plugins are queued, and one or more threads are used to perform the real
function calls. The number of threads to use is taken from the keyword INSTANCES in the
PLUGIN section. If the plugin cannot be made multithread safe, just set INSTANCES to 1
and all calls will be serialized for that plugin. This is independent from the number of
connectors that use the plugin, so even if there are 10 connectors that use the same
plugin, only one call will ever be made at the same time.
To make a multithread safe plugin, things are actually quite simple.
The main config structure is common for all plugin threads for a certain plugin, so if any
fields there needs to be updated you must use mutexes of some sort to prevent data
corruption. Feel free to use the functions listed in the "Mutexes" section below.
The rest of the data is private to the thread. Just do not return the same value as the
threadlocal pointer in several threads, and you will be safe. Naturally you must also make
sure you handle any static variables correctly.

Configuration

Configuring the plugin loader
First you must describe the plugin to the server. This is done in the server.cfg file, as a
section called PLUGIN. There should be one PLUGIN section for each plugin. The section
looks like this:
PLUGIN pluginname <
LIBRARY=...
...
>

LIBRARY
The keyword LIBRARY should point to the file containing the plugin, compiled as a
shared library. For safety, always use a full path here.
This parameter is mandatory.

INSTANCES
The keyword INSTANCES says how many threads will be used for running the plugin. All
requests to the same plugin are queued, and then those runner threads pick the jobs in the

EMG and HA (High Availability) Page 4 http://www.nordicmessaging.se

order they came in. The "config" parameter will be the same, so you'll have to use the
proper locks if you want to update anything there.
This parameter is mandatory. If the value is 0, no threads are started, and the plugin can't
be used.

CONFIG
The keyword CONFIG contains the value that will be sent as the second parameter to
create_config(). The most common use is to let it be a filename, containing the
configuration options.
This parameter is optional.

OFFSET
The value of the parameter OFFSET should be an integer. This value is added to the
response->result field, making it possible to get them into a unique range.
This parameter is optional.

Configuring the connectors

Next there must be a reference from the connector(s) that should use the plugin. This is
done by adding a line PLUGIN=pluginname for that connector. Any number of connectors
can use the same plugin.
There is a second form of this reference, looking like this:
PLUGIN=pluginname:parameter. This makes all calls from this connector having the field
ccarg in the pluginrequest_t struct be set to the string parameter. The type of this field is a
vbuf_t, and is NULL if the string is absent or empty.

Configuring the plugin

Most plugins tend to need some sort of configuration file, to avoid having to recompile
the plugin every time something in the environment changes. Read this file in the
create_config() function. To help with this, you can call the function config_read(), with the
following definition:
typedef int config_readline_t(void* cfg, vbuf_t* line);
int config_read(char* configname, void* config, config_readline_t* linereader);

The file is opened, and each line is read. Comments starting with ‘#’ are removed, and
empty lines are ignored. The rest is sent to the linereader() callback in a vbuf_t. Afterwards
the file is closed.

Logging
There are two functions you can use for logging. The first one should be used in the start
and stop functions. It is defined like this:
void xlog(int loglevel, const char* format, ...);

The loglevel is one of SMSLOG_CRITICAL, SMSLOG_ERR, SMSLOG_WARNING,
SMSLOG_INFO, SMSLOG_DEBUG, and SMSLOG_DEBUG2. The format is a normal printf-style
format, followed by its parameters. If the level is at least as high as the level set in
server.cfg, the line is added to the end of the $EMGDIR/log/general file. The string must end
with a newline.
The second function shall be used in the four message functions. It looks like this:
CILOG(connectorinfo_t* ci, const char* pluginname, int loglevel,

EMG and HA (High Availability) Page 5 http://www.nordicmessaging.se

int loglevel, const char* format, ...);

The connectorinfo_t parameter should be taken from the request parameter, in the ci field.
The pluginname should be the name of the plugin, being sent as the first parameter to
create_config(). This makes it easy to keep the log entries for different plugins separate.
The valid values for the loglevel are the same as for xlog(). To get the log entry to the
correct file, make a bitwise or between that value and SMSLOG_PLUGIN (e.g.
SMSLOG_PLUGIN | SMSLOG_INFO). The entries are sent to the file
$EMGDIR/log/plugin.<pluginname>.
The loglevel comparison is done with the log level for the connector that is using the
plugin. This value can be found in the loglevel field in the connectorinfo_t structure. This
field can be checked before performing some expensive calculation, to avoid having the
plugin spend lots of time producing some large log data, when the loglevel is set so that
these lines would never appear. It can look like this:
connectorinfo_t* ci = request->ci;
if (ci->loglevel >= SMSLOG_DEBUG) {
 // some expensive operation
 @@...
 // then log the result
 CILOG(ci, config->name, SMSLOG_DEBUG | SMSLOG_PLUGIN, "...\n");
}

Building the plugin
The commands needed to build a shared library are slightly different on the available
platforms. In each case, add any -Idirectory or -llibrary as needed, depending on what your
plugin does.

Linux
gcc -c -DEMG myplugin.c
gcc -shared -Wl,-soname,myplugin.so.0 -o myplugin.so.0.0 myplugin.o

Solaris
gcc -c -DEMG myplugin.c
gcc -G -h myplugin -Bdynamic -o myplugin.so.0.0 myplugin.o

HP-UX
cc -c -fpic -DEMG myplugin.c
gcc -fpic -shared -o myplugin.sl.0.0 myplugin.o

Troubleshooting
Since EMG is heavily multithreaded, single stepping through it with gdb is virtually
pointless. Instead, use the logging functions to examine what the plugin is doing. A good
way to start is to put this line at the beginning and end of each function. By putting it at
the critical places, adding extra parameters as needed, one gets a good idea of what is
going on.
xlog(SMSLOG_DEBUG2, "s:%d\n", __FILE__, __FUNCTION__, __LINE__);

By running emgd within gdb you get immediate feedback if there is a NULL pointer
reference somewhere. Let it run, and then use bt to get a stack trace of where the problem
was found. Just don't try to set any breakpoints.

EMG and HA (High Availability) Page 6 http://www.nordicmessaging.se

If possible, you can also run emgd within Valgrind (http://www.valgrind.org). It has a
rather high performance penalty, but is invaluable for finding memory related bugs.

Functions
There are several functions within emgd that you can use from your plugin. These
references will be resolved when the plugin is loaded, so you don't have to link with
some EMG library or anything.

Messages (qe)

Each message consists of a set of key-value pairs, called an "option". There are three
functions to get the value of such an option.
char* qe_option_get(void* qe, int option);
char* qe_option_get2(void* qe, int option, int* len);
int qe_option_getint(void* qe, int option, int defaultvalue);

The function qe_option_get() returns a pointer to the string representation of the value. The
function qe_option_get2() does the same, but also sets len to the length of the value.
The function qe_option_getint() returns a value as an integer. This should be used for
options such as "type of number", "message type", and a few others. The string version
will always work, but this function is more efficient.
To change the value of an option, use one of the the following functions:
void qe_option_replace(void* qe, int option, char* value);
void qe_option_replace2(void* qe, int option, char* value, int len);
void qe_option_replaceint(void* qe, int option, int value);

The parameter len is the length of the value. Use this function if the length is available, or
when inserting data containing null bytes.
The list of options is available in the file mgp.h. All messsage functions are declared in
pluginqueue.h.

Mutexes

To make sure only one thread is accessing or modifying some common data, each
section that uses that data must use some sort of lock. In EMG there are a couple of
functions that can help with this. All of them are defined in the mutex.h file.
mutex_t *mutex_create(void);

Create a mutex_t object.
void mutex_destroy(mutex_t *);

Destroy the mutex_t object. The pointer can be NULL.
int mutex_lock(mutex_t *);

Lock the mutex. Any other threads that will try to lock the same mutex will block until
the mutex is unlocked. Locking a NULL mutex will always succeed, so make sure the
pointer is valid.
void mutex_unlock(mutex_t *);

Unlock the mutex. If another thread is waiting for this mutex, it will continue running.

Lists

There are two types of list API's in EMG. The first one is list_t, which has a function for
locking the list to be multithread safe. The second is pbuf_t, which is a little more
lightweight. In a plugin both types are used.

EMG and HA (High Availability) Page 7 http://www.nordicmessaging.se

list_t
For a plugin, a list_t is only used when waiting for the reply from a database operation.
As such, there are only two functions you'll have to use.
list_t* list_create(int listtype, void* dummy);

This function creates a new list.
The listtype should be LISTTYPE_LL. Send NULL for the dummy arg.
list_destroy(list_t* list, void* dummy);

Release all memory used by this list. Send NULL for the dummy arg.

pbuf_t
A pbuf_t is a list of pointers. The functions are defined in the file pbuf.h. Several functions
exists for traversing the list, both for calling some function on all entries as well as
extracting one or more entries where the function returns non-zero.

String buffers (vbuf_t)

A vbuf_t is a classic string type, dynamically growing when needed. The functions are
defined in the file vbuf.h.

Databases

The database profiles defined in server.cfg are available from plugins. The API requires
the following steps. First you need to get the queue.
void* queue = db_findbyqueue("dbprofile-name");

From there, you need to get the "dbh".
void* dbh = db_finddbh(queue);

Next you need to build the SQL statement. For this, use a vbuf_t.
There are a couple of functions you can use for this.
To add a table name, prepending the TABLE_PREFIX setting if needed:
void db_appendtablename(vbuf_t* sql, const char* tablename);

To append a string, quoting any difficult characters such as single
and double quotes:
void db_appendquoted(void* dbh, vbuf_t* sql, const char* string, int len);

To run the SQL statement:
void db_sendrequest(void* queue, list_t* responseq,
const char* sql, int encoding);

To get the char* version from a vbuf_t, use vbuf_tostring().
To create the responseq, do this:
list_t* responseq = list_create(LISTTYPE_LL, NULL);

Useful values for encoding are MGP_CHARCODE_LATIN1 and
MGP_CHARCODE_UTF8.
Wait for the response like this:
dbresponse_t* dbresponse = db_readresponse(responseq);

If the statement as a SELECT, the result is extracted like this:
if (dbresponse) {
 dbrow_t dbrow;
 while ((dbrow = dbresult_fetchrow(dbresponse->dbresult)) != NULL) {
 // Values as char* in dbrow[0], dbrow[1] etc

EMG and HA (High Availability) Page 8 http://www.nordicmessaging.se

 }
}

Finally clear the response:
db_freeresponse(dbresponse);
list_destroy(responseq, NULL);

	EMG plugin API
	Overview
	API functions
	Load and unload
	Thread start and stop
	For each message

	Message attributes
	Threads
	Configuration
	Configuring the plugin loader
	LIBRARY
	INSTANCES
	CONFIG
	OFFSET

	Configuring the connectors
	Configuring the plugin

	Logging
	Building the plugin
	Linux
	Solaris
	HP-UX

	Troubleshooting
	Functions
	Messages (qe)
	Mutexes
	Lists
	list_t
	pbuf_t

	String buffers (vbuf_t)
	Databases

